

Спецификация материалов для проведения практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «Инженерный класс» для направлений «Инженерно-техническое» и «Курчатовские классы»

1. Назначение конкурсных материалов

Материалы практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» (далее – Конкурс) предназначены для оценки уровня практической подготовки участников.

2. Условия проведения практического этапа

Практический этап Конкурса проводится в очной форме на базе организации высшего образования, участвующей в реализации проекта «Инженерный класс».

При выполнении работы обеспечивается строгое соблюдение порядка организации и проведения Конкурса.

Во время выполнения кейса №1 разрешается использовать базовый комплект учебного оборудования для инженерного класса, непрограммируемый калькулятор, таблицу физических величин.

Во время выполнения кейса №2 разрешается использовать системы автоматизированного проектирования (САПР) КОМПАС-3D и T-FLEX САD (любые версии), слайсер Ultimaker Cura (любые версии).

3. Продолжительность выполнения работы

На выполнение заданий практического этапа Конкурса отводится **120 минут.** Во время проведения мероприятия участник может выйти из зоны проведения мероприятия не более чем на 5 минут, предупредив организатора в аудитории. Мероприятие не продлевается на время отсутствия участника.

4. Содержание и структура работы

Конкурсные задания разработаны преподавателями организаций высшего образования, участвующих в реализации проекта «Инженерный класс».

Индивидуальный вариант участника включает два независимых кейса, содержание которых соответствует программам элективных курсов «Инженерный практикум» и «Технологии современного производства».

Структура заданий по каждому кейсу представлена в обобщённом плане конкурсных материалов.

5. Система оценивания отдельных частей и работы в целом

Задание считается выполненным, если ответ участника совпал с эталоном. Вес каждого правильно выполненного задания в баллах, а также критерии оценивания представлены в Приложениях 1 и 2 соответственно. Максимальный балл за выполнение работы – 60 баллов.

6. Приложения

1. Обобщённый план конкурсных материалов для проведения практического этапа Конкурса.

2. Демонстрационный вариант конкурсных заданий практического этапа Конкурса.

Обобщённый план конкурсных материалов для проведения практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «Инженерный класс» для направлений «Инженерно-техническое» и «Курчатовские классы»

№ задания	Уровень сложности	Кодификатор	Контролируемые требования к проверяемым умениям	Балл за правильное выполнение			
Кейс №1							
1.	Углубленный		Знание и понимание основных принципов измерения физических величин. Знание основных формул и законов физики в рамках курса средней школы. Умение самостоятельно подготовить экспериментальную установку	20			
2.	Базовый	Введение. Техническая механика. Тепловые процессы в технических устройствах. Электромагнитные приборы	Знание основных формул и законов физики в рамках школьного курса. Умение производить работы с измерительными приборами, проводить измерения физических величин. Знание основных соотношений для вычисления абсолютной и относительной погрешностей; правил сложения/вычитания абсолютных погрешностей; правил умножения/деления относительных погрешностей, а также правил умножения на константу различных видов погрешностей. Умение вычислять прямые и косвенные погрешности измерений	25			
3.	Базовый		Умение производить работы с измерительными приборами, проводить измерения физических величин. Знание основных соотношений для вычисления абсолютной и относительной погрешностей	15			
Кейс №2	2	r					
1.	Углубленный	3D-моделирование	Создание трёхмерной модели детали в программе для трёхмерного проектирования (САПР) по чертежу	35			
2. Базовый		3D-моделирование	Назначение материала и определение площади и объёма созданной модели детали средствами САПР	15			
3.	Базовый	3D-моделирование, 3D-печать	Создание трёхмерной сборки из отдельных деталей Импортирование созданной модели детали в формат, подходящий для 3D-печати. Задание параметров печати на 3D-принтере Проведение статического расчёта прочности детали средствами САПР	10			

Демонстрационный вариант для проведения практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «Инженерный класс» для направлений «Инженерно-техническое» и «Курчатовские классы»

<u>Кейс №1</u>

Вариант 1

На основе предлагаемых материалов, указанных в Таблице 1, произвести косвенное измерение коэффициентов жёсткости пружин двумя способами. Оценка коэффициентов должна быть произведена по серии, содержащей, как минимум, три измерения с использованием каждого шара. Предложите и опишите экспериментальную методику, позволяющую добиться наилучшей точности. Сравните полученные двумя способами результаты друг с другом и с эталонными, сформулируйте выводы.

Следует оценить погрешность для получаемых в Вашем эксперименте коэффициентов жёсткости. Зарисуйте схему эксперимента с указанием всех действующих сил.

Таблица 1

Наименование	Количество
Пружина спиральная 10 Н/м	1
Пружина спиральная 25 Н/м	1
Шар с крючком 35 г	1
Шар с крючком 70 г	1
Штатив с системой закрепления пружин	1
Цифровой секундомер	1
Весы электронные	1
Линейка деревянная	1

Критерии оценивания

Критерий	Баллы
Задание 1.1	
Участник Конкурса корректно собрал экспериментальную установку (пружинный маятник)	5
Участник Конкурса предложил два алгоритма проведения эксперимента: измерение периода колебаний с использованием цифрового секундомера и массы шаров с использованием электронных весов для последующей оценки коэффициента жёсткости; измерение удлинения пружины с использованием линейки и массы шаров с использованием электронных весов для последующей оценки коэффициента жёсткости	10
Записаны формулы и законы: $T = 2\pi \sqrt{\frac{m}{k}}$; $mg = k \Delta x$	5
Задание 1.2	
Проведена серия измерений (способ – период пружинного маятника): как минимум по три измерения на каждую пружину с использованием каждого шара, итого – 12 измерений:	
А – Проведены измерения только с одним шаром или с одной пружиной – получено 6 измерений	1
Б – Проведены все необходимые измерения, получено 12 и более измерений	3
Проведена серия измерений (способ – удлинение пружины при нагружении): как минимум по три измерения на каждую пружину с использованием каждого шара, итого – 12 измерений:	
А – Проведены измерения только с одним шаром или с одной пружиной – получено 6 измерений	1
Б – Проведены все необходимые измерения, получено 12 и более измерений	3
Участником Конкурса высказаны грамотные и физически обоснованные предложения, позволяющие повысить точность эксперимента: измерение периода колебаний более трёх раз, небольшое отклонение от положения равновесия	
А – Высказано одно предложение, повышающее точность эксперимента	1
Б – Высказано более двух предложений для повышения точности	3
Получены целевые значения физической величины, отличающиеся друг от друга не более чем на 15%	8
Сформулированы выводы по работе (например, о справедливости закона Гука по результатам эксперимента, о схожести получаемых результатов оценки коэффициента жёсткости вне зависимости от способа измерения и др.)	5
Задание 1.3	
Корректно описаны формулы, по которым производилась оценка погрешности, правильно оценена погрешность эксперимента	10
Зарисована схема пружинного маятника с указанием силы тяжести, силы упругости	5
Итого	60

На основе предлагаемых элементов, указанных в Таблице 1, проведите косвенное измерение удельной теплоёмкости металлического бруска. Запишите все необходимые формулы и сформулируйте законы, проведите серию измерений, рассчитайте погрешности. Постройте график зависимости удельной теплоёмкости от температуры. Проанализируйте, за счёт чего можно было бы повысить точность эксперимента?

- -

	Таблица 1
Наименование	Количество
Алюминиевый брусок	1
Провод соединительный чёрный	1
Провод соединительный красный	1
Источник питания	1
Калориметр (набор «Теплота-2»)	1
Катушка нити	1
Вода	1 л
Цифровая лаборатория по физике (термометр)	1
Штангенциркуль	1
Высокий стеклянный стакан 250 мл (набор	1
«Теплота-2»)	

Критерии оценивания

Критерий		
Задание 1.1		
Участник конкурса изобразил схему, позволяющую выполнить	4	
эксперимент		
Записано уравнение теплового баланса $Q_{\text{пол}} = Q_{\text{отд}}$	8	
Записана формула для расчёта количества теплоты $Q = cm\Delta t$	8	
Задание 1.2		
Участник конкурса корректно определил удельную теплоёмкость	15	
металлического бруска (стержня, шара), по крайней мере, получил		
значение, отличающееся от табличного для металла, из которого		
выполнен брусок (стержень, шар), не более чем на 15%		
Проведена серия измерений		
А – Серия содержит 2-3 измерения		
Б – Серия содержит 4 и более измерений		
Задание 1.3		
Корректно описаны формулы, по которым производилась оценка	7	
погрешности, грамотно оценена погрешность эксперимента		
На миллиметровой бумаге построен оформленный в соответствии с		
требованиями и хорошо читаемый график зависимости удельной		
теплоёмкости с от температуры t вида прямой, параллельной оси		
абсцисс		
Итого	60	

Используя предложенные измерительные приборы и материалы, представленные в Таблице 1, нарисуйте и соберите схему для определения сопротивления проволоки катушки индуктивности мостовым методом. Определите сопротивление проволоки с учётом погрешности, проведя необходимое количество измерений.

Определите длину проволоки, считая её диаметр равным $(0,24\pm0,02)$ мм, а удельное сопротивление проволоки равным $1,7\cdot10^{-8}$ Ом·м.

ВАЖНО: необходимо к любой из клемм источника тока подключить один из резисторов в качестве токопонижающего и запитывать схему от источника через него.

Наименование	Количество
Школьный миллиамперметр с нулём посередине	1
шкалы (два предела 6 мА и 60 мА)	
Линейка деревянная 25-50 см	1
Резистор сопротивлением около 10 Ом (или	2
потенциометр, используемый только на	
максимальном сопротивлении)	
Катушка индуктивности из тонкой медной	1
проволоки	
Нихромовая проволока диаметром 0,35 мм такой	1
длины, чтобы она была длиннее линейки на 2-4	
СМ	
Источник тока на 4 В	1
Ключ	1
Соединительные провода со штекерами типа	8
«банан»	
Зажим типа «крокодил» с клеммами для	4
штекеров соединительных проводов (два таких	
зажима можно заменить парой канцелярских	
зажимов)	
Монтажная панель	1

Таблица 1

Критерии оценивания

Критерий		
Задание 1.1		
Участник Конкурса корректно:		
А – нарисовал мостовую схему	6	
Б – собрал мостовую схему	8	
В – собрал реохорд со скользящим контактом	6	
Задание 1.2		
Участником Конкурса верно уравновешен мост	3	
Участником Конкурса корректно записан закон Ома для участков	3	
мостовой схемы		
Участником Конкурса получена верная расчётная формула для	5	
сопротивления проволоки катушки индуктивности		
Участником Конкурса верно измерены необходимые длины	2	
участков реохорда		
Участником Конкурса проведено более одного измерения и	4	
получено значение сопротивления проволоки катушки		
Участником Конкурса верно записана формула для расчёта		
погрешности сопротивления проволоки катушки		
Участником Конкурса верно записан результат сопротивления		
проволоки катушки с учётом погрешности		
Задание 1.3		
Участником Конкурса верно записана формула для определения		
длины проволоки катушки		
Участником Конкурса верно рассчитана длина проволоки катушки		
Участником Конкурса верно записана формула для определения		
погрешности измерения длины проволоки катушки		
Участником Конкурса верно записан результат измерения длины		
проволоки катушки индуктивности с учётом погрешности		
Итого		

За следующие пункты можно добавить по 2 балла при условии, что общая сумма баллов не превышает 60 баллов:

Указано, что положение нуля на миллиамперметре неустойчиво (нестабильно, скачет, сложно поймать или определить), и поэтому требуется выполнить серию измерений длин плеч реохорда.

В расчёте погрешности учитывается не только приборная погрешность измерительной линейки (половина цены деления или целое деление, если качество линейки недостаточно высокое), но и добавлена операторская погрешность определения положения равновесия моста.

<u>Кейс №2</u>

Вариант 1

1. Постройте 3D-модель по заданному чертежу (рис. 1). Сохраните полученную модель детали в формате выбранной САПР: *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

2. Назначьте из библиотеки материалов для построенной модели детали материал *Сталь 10 ГОСТ 1050-2013* и определите площадь и объём созданной модели детали при помощи команд используемой САПР. Необходимо предоставить снимок экрана (скриншот) с требуемыми параметрами.

3. Создайте трёхмерную сборку по чертежу (рис. 2) и спецификации (рис. 3). Все требуемые для сборки детали, кроме *корпуса*, готовы и предоставляются участнику в формате *step.

Рис. 1. Чертёж для создания 3D-модели

Рис. 2. Сборочный чертёж

\prod	фармат	Зана	/lo3.	Обозначен	ие Наименование	Кол	Приме- чание
д. примен.					<u>Документация</u>		
Repu	A3				Сборочный чертеж		
					<u>Детали</u>		
ev Va	A3		1 2		Основание Корпус	1	
Cnpai					<u>Стандартные издел</u>	<u>ИЯ</u>	
			3		Болт M8x55 ГОСТ 15591 Гайка M8x1-6H ГОГТ 5914	1-70 4 5-70 4	
			5		Шайба С.8 ГОСТ 11371	-78 4	
Подп. и дата							
48. N ^o Βιμδη.			-				
am unti. Nº M							
i dama B3							
Noðn. L	Изг	t Aut	m	№ доким. Подп. Дата	Демо-вариані	т 1	
Инв. № подл.	Ра. При Н.к	зрад. ов. онт,	0.		Спецификация	т. Лист НИУ "1	<u>листов</u> 1 МЭИ"

Рис. 3. Спецификация

Количество снижаемых Критерий баллов Ошибка в размере трёхмерной модели детали -3 балла за каждую или отсутствие какого-либо элемента ошибку (ребро жёсткости, отверстие и т.д.) -5 баллов Неверно назначен материал, указанный в задании Наличие пересечений в сборке -2 балла за каждый случай пересечения Несоответствие трёхмерной сборки -2 балла сборочному чертежу (положение гаек и болтов) -10 баллов Предоставление на проверку файлов в иных форматах, не указанных в задании

Критерии снижения оценки за выполнение заданий

Памятка для выполнения кейса

Порядок действий:

1. По чертежу построить трёхмерную модель детали в заданной САПР.

2. Назначить из библиотеки материалов для построенной модели детали материал, указанный в задании.

3. Определить площадь и объём созданной модели детали при помощи команд используемой САПР (КОМПАС-3D или T-FLEX CAD).

4. Сохранить полученную модель в формате выбранной САПР: *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

5. Создать трёхмерную сборку по заданному чертежу и спецификации.

6. Сохранить полученную сборку в формате выбранной САПР: *.a3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

По результатам выполнения кейс-задания участником предоставляются на проверку следующие файлы:

1. Трёхмерная модель детали в формате *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

2. Файл (скриншот) с параметрами площади и объёма в формате *.jpg.

3. Трёхмерная сборка в формате *.a3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD, а также файлы с компонентами сборки.

1. Постройте 3D-модель по заданному чертежу (рис. 1). Сохраните полученную модель детали в формате выбранной САПР: *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

2. Назначьте из библиотеки материалов для построенной модели детали материал Сплав АЛ2 ГОСТ 1583-93 и определите площадь и объём созданной модели детали при помощи команд используемой САПР. Необходимо предоставить снимок экрана (скриншот) с требуемыми параметрами.

3. Импортируйте файл с 3D-моделью детали из САПР (КОМПАС-3D или T-FLEX CAD) в слайсер Ultimaker Cura.

В слайсере Ultimaker Cura задайте параметры для 3D-печати, указанные в Таблице 1. Параметры, не указанные в Таблице 1, остаются по умолчанию. Разместите 3D-модель таким образом, чтобы создалось наименьшее количество поддержек (определяется по времени печати). Проделанную работу необходимо сохранить в формате *gcode, а также предоставить снимки (скриншоты) экрана с параметрами настроек.

Параметр	Значение
Профиль	Fine
Диаметр сопла	0,4 мм
Высота первого слоя	0,2 мм
Высота слоя	0,2 мм
Ширина линии внутренней стенки	0,4 мм
Толщина стенки	1,2 мм
Плотность заполнения	70 %
Шаблон заполнения	Треугольник
Температура для объёма печати	50 °C
Температура сопла	210 °C
Температура стола	60 °C
Скорость печати	70 мм/с
Скорость вентилятора	70 %
Плотность поддержки	15 %
Шаблон поддержек	Зигзаг

Таблица 1. Параметры для 3D-печати

Рис. 1. Чертёж для создания 3D-модели

Критерии снижения оценки за выполнение заданий

Критерий	Количество снижаемых баллов
Ошибка в размере трёхмерной модели детали	-3 балла за каждую
или отсутствие какого-либо элемента	ошибку
(ребро жёсткости, отверстие и т.д.)	
Неверно назначен материал, указанный в	-5 баллов
задании	
Модель размещена на рабочем столе 3D-	-10 баллов
принтера таким образом, что количество	
поддержек не минимально	
Неверно задан любой из параметров	-1 балл за каждый
трёхмерной печати	параметр
Предоставление на проверку файлов в иных	-10 баллов
форматах, не указанных в задании	

Памятка для выполнения кейса

Порядок действий:

1. По чертежу построить трёхмерную модель детали в заданной САПР.

2. Назначить из библиотеки материалов для построенной модели детали материал, указанный в задании.

3. Определить площадь и объём созданной модели детали при помощи команд используемой САПР (КОМПАС-3D или T-FLEX CAD).

4. Сохранить полученную модель детали в формате выбранной САПР: *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

5. Экспортировать построенную на первом шаге трёхмерную модель детали в формат *.stl.

6. Импортировать трёхмерную модель детали в слайсер Ultimaker Cura.

7. Разместить трёхмерную модель детали на рабочем столе 3Dпринтера в слайсере Ultimaker Cura таким образом, чтобы создалось наименьшее количество поддержек.

8. Внести настройки печати, указанные в задании. Сохранить результат в виде файла формата *.gcode, а также в виде снимков экрана (скриншотов) в формате .*jpg.

По результатам выполнения кейс-задания участником предоставляются на проверку следующие файлы:

1. Трёхмерная модель детали в формате *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

2. Файл (скриншот) с параметрами площади и объёма в формате *.jpg.

3. Файл для трёхмерной печати в формате *.gcode.

4. Файлы (скриншоты) с настройками программы Ultimaker Cura и размещением модели детали в рабочей зоне принтера в формате *.jpg.

1. Постройте 3D-модель детали по заданному чертежу (рис. 1). Сохраните полученную модель в формате выбранной САПР: *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

2. Назначьте из библиотеки материалов для построенной модели детали материал *Сталь 10 ГОСТ 1050-2013* и определите площадь и объём созданной модели детали при помощи команд используемой САПР. Необходимо предоставить снимок экрана (скриншот) с требуемыми параметрами.

3. При помощи средств выбранной САПР (КОМПАС-3D или T-FLEX CAD) выполните статический расчёт с условием, что нижняя грань основания *корпуса* закреплена, а на верхнюю грань *корпуса* приложена распределённая нагрузка, равная *100 кН* (рис. 2). Необходимо предоставить снимок экрана (скриншот) с цветной картой распределения напряжений и снимок экрана (скриншот) с деревом построений прочностного анализа.

Шкала напряжений для построения эпюры используется по умолчанию. Материал для статического расчёта используется по умолчанию (сталь).

Рис. 1. Чертёж для создания 3D-модели

Рис. 2. Направление приложения нагрузки для выполнения статического расчёта

Критерии снижения оценки за выполнение заданий

Критерий	Количество снижаемых баллов
Ошибка в размере трёхмерной модели детали	-3 балла за каждую
или отсутствие какого-либо элемента	ошибку
(ребро жёсткости, отверстие и т.д.)	
Неверно назначен материал, указанный в	-5 баллов
задании	
Отсутствие закрепления нижней грани	-3 балла
основания при статическом расчёте прочности	
Ошибка в указании направления действия	-2 балла
приложенной нагрузки	
Ошибка в числовом значении приложенной	-2 балла
нагрузки	
Предоставление на проверку файлов в иных	-10 баллов
форматах, не указанных в задании	

Памятка для выполнения кейса

Порядок действий:

1. По чертежу построить трёхмерную модель детали в заданной САПР.

2. Назначить из библиотеки материалов для построенной модели детали материал, указанный в задании.

3. Определить площадь и объём созданной модели детали при помощи команд используемой САПР (КОМПАС-3D или T-FLEX CAD).

4. Сохранить полученную модель детали в формате выбранной САПР: *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

5. Выполнить статический расчёт по заданным параметрам.

6. Сохранить изображения цветной карты распределения напряжений и дерева построений прочностного анализа.

По результатам выполнения кейс-задания участником предоставляются на проверку следующие файлы:

1. Трёхмерная модель детали в формате *.m3d для КОМПАС-3D или *.grs, *.grb для T-FLEX CAD.

2. Файл (скриншот) с параметрами площади и объёма в формате *.jpg.

3. Файл с цветной картой распределения напряжений (скриншот) в

формате *.jpg.

4. Файл с деревом построений прочностного анализа (скриншот) в формате *.jpg.